
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1, FEBRUARY 1995 15 

A Self-organizing Fuzzy Logic Controller 
for Dynamic Systems Using a Fuzzy 

Auto-Regressive Moving Average (FARMA) Model 
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Abstract-This paper proposes a complete design method for 
an on-line self-organizing fuzzy logic controller without using 
any plant model. By mimicking the human learning process, the 
control algorithm finds control rules of a system for which little 
knowledge has been known. In a conventional fuzzy logic control, 
knowledge on the system supplied by an expert is required in 
developing control rules, however, the proposed new fuzzy logic 
controller needs no expert in making control rules. Instead, 
rules are generated using the history of input-output pairs, and 
new inference and defuzzification methods are developed. The 
generated rules are stored in the fuzzy rule space and updated on- 
line by a self-organizing procedure. The validity of the proposed 
fuzzy logic control method has been demonstrated numerically in 
controlling an inverted pendulum. 

I. INTRODUCTION 
RADITIONALLY, controllers are designed on the basis T of a mathematical description and its linearized model. 

Therefore, it is difficult to implement these model-based 
controllers to a real system, especially to a system which is 
complex and nonlinear [I]. As an altemative to these model- 
based controls, the concept of fuzzy logic was introduced by 
Zadeh [2], and since its introduction by Mamdani [3], [4], the 
fuzzy logic control method has been successfully applied to 
various control problems [5]-[8]. 

In general, the Mamdani’s fuzzy logic control method con- 
trols the plant using fuzzy inference with rules preconstructed 
by an expert. Although there are some nonlinear effects, the 
fuzzy inference procedure can be roughly interpreted as an 
interpolation of the rules [9], [lo]. Therefore, in Mamdani’s 
method, the most important task is to form the rule base which 
represents the experience and intuition of human experts. 
When the rule base of human experts is not available, an 
efficient control can not be expected. 

The self-organizing fuzzy controller (SOFC) is a rule-based 
type of controller which learns how to control on-line while 
being applied to a system, and it has been used successfully 
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for a wide variety of processes [ 111-[ 131. The SOFC combines 
system identification and control based on experience. The 
ability of SOFC in carrying out the system identification 
makes it unnecessary to have a good understanding of the 
environment; therefore, only a minimal amount of information 
about the environment needs to be provided. As a step toward 
self-organization Ramaswamy, et al. proposed an automatic 
tuning method for a fuzzy logic controller and applied it 
to control a nuclear reactor [14], [15]. In this method, the 
rules were parameterized as functions of fuzzy input variables 
and the parameters were tuned off-line through experiments. 
Recently, Jang proposed a generalized control strategy that 
enhances the fuzzy controllers with self-leaming capability 
[16], where he implemented fuzzy inference system into a 
neural network and applied the back-propagation-type gradient 
descent method to propagate the error signals through different 
times stages. Karr and Gentry used genetic algorithms for high- 
performance of a fuzzy control, and successfully applied it to 
a pH control problem [17]. 

The main purpose of this paper is to minimize the role of 
human experts in designing a fuzzy logic controller. In general, 
human beings learn about an unknown object through expe- 
rience, which is replaced with a new experience whenever it 
is regarded better. For this reason, the Fuzzy Auto-Regressive 
Moving Average (FARMA) controller is proposed, which not 
only uses output history but also input history in its rules. 
The FARMA controller has no rule at its initial stage, but 
forms rules by defining membership functions using the plant 
input-output data as singletones and stores them in a rule 
base. The rule base is updated as experience is accumulated 
using a self-organizing procedure. Another contribution of this 
paper is the development of new method for the inference 
and defuzzification. Unlike the conventional inference scheme 
where the truth value reflects only one input variable of the 
least similarity, the new inference method incorporates all 
input variables using Euclidean distance in computing the truth 
value. A new method for defuzzification is also developed by 
adding a predictive capability using a trend model. 

In Section 11, we introduce the FARMA rule. The generation 
of the FARMA rule using plant input-output pairs is presented 
in Section 111-A. The developments of inference and defuzzifi- 
cation are presented in Sections 111-B and C, respectively. The 
self-organization of the rule base is presented in Section III- 
D. Afterwards, in Section IV, simulation results are presented. 
And, finally, the conclusions are drawn in Section V. 

10634706/9.5$04.00 0 199.5 IEEE 
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rI. THE FARMA FUZZY LOGIC CONTROLLER output history can be defined as follows 

A. Formulation of the Problem 

In conventional fuzzy logic control (FLC), the dynamic 
behavior of a system is characterized by a set of linguistic 
descriptions of rules based on an expert’s knowledge. The 
expert’s knowledge is usually of the form 

RI: If 21 is A I ,  and z2 is B1, then z is C1, 
Ra: If is A2, and 2 2  is B2, then z is C2, 

. . . . . . . . . . . .  

. . . . . . . . . . . .  
R,: If XI is A,, and x2 is B,, then z is C, 

where z1 ,x2 ,  and 2 are linguistic variables representing 
two process variables and one control variable, respectively; 
A , ,  Bi, and C, are linguistic values or fuzzy sets of the 
linguistic variables 5 1 ,  z 2 ,  and z ,  respectively. Typically, the 
linguistic variables of a FLC are the error and the error 
derivative of the system output. The linguistic values are 
usually defined as fuzzy sets with appropriate membership 
functions. 

In general, the output of a system can be described with a 
function or a mapping of the plant input-output history. For 
a single-input single-output (SISO) discrete-time system, the 
mapping can be written in the form of a nonlinear function 
as follows 

IF yref is Aizr  y(k) is A22, y(k - 1)  is A3tr . .  . .  

A N D u ( l c - l ) i s B l , , u ( k - 2 )  is B2z,. . . ,u(k-rn)isB,, ,  
y(k - n + 1)  is A(,+l)Z, 

THEN u ( k )  is C,, (for the ith rule) (3) 

where 
n, m: number of output and input variables 
A,, , B,,: antecedent linguistic values for the i-th rule 
C, : consequent linguistic values for the i-th rule. 
The rule (3) resembles the auto-regressive moving average 

model (ARMA) in time-series; and hence in this paper, it will 
be called the FARMA rule. 

As an input to the FLC, crisp plant conditions are changed 
to fuzzy sets, i.e., input fuzzy sets, corresponding to the 
antecedent part of the FARMA rule. The value gref and the 

l ) , u ( k  - 2 ) , . . . , u ( k  - m), at the kth step are used to form 
input fuzzy sets of the FLC. The fuzzification for input fuzzy 
sets is done by fuzzy singletons using the crisp values, yref, 
y (k) ,y(k-  l ) , . . .  , y ( k  - n +  l ) , u ( k  - l ) , u ( k  - 2) , . . .  . and 
u(k  - m), in the next section. 

given plant condition, y(k), g(k - l), ... , g(k - n + l ) ,  u(k  - 

111. DESIGN OF THE FARMA FUZZY LOGIC CONTROLLER 

Y(k + 1) = f(Y(k),  Y(k - I ) ,  Y(k - 2), .. . 1  

U (  k ) ,  u (k  - 1),  U (  k - 2), .. .) 
A. Generation of the Rule Base 

(1) In a conventional FLC, an expert usually determines the 

where y(k) and u(k) are, respectively, the output and input 
variables at the kth time step. 

The objective of the control problem is to find a control 
input sequence which will drive the system to an arbitrary 
reference set point yref. Rearranging ( I )  for control purposes, 
the value of the input u at the k-th step that is required to 
yield the reference output yref can be written as follows 

u ( k )  =S(Yref,Y(k),?l(k - l),...,U(k - l),.(k - 2) , . . . )  
(2 )  

which is viewed as an inverse mapping of (1). 

B. Definition of the FARMA Rule 

It should be noted that the control input in (2) depends 
on both input and output history. Therefore, it is proposed 
to include the input terms, u(i) ,  in a fuzzy rule, since the 
output history, y(i), alone cannot describe the system. From 
this observation, a rule is made from both input and output 
history; while a typical conventional fuzzy rule uses the “error” 
and the “change of error” of the output history alone. 

The proposed controller does not use rules preconstructed 
by experts, but forms rules with input and output history at 
every sampling step. The rules generated at every sampling 
step are stored in a rule base and updated as experience is 
accumulated using a self-organizing procedure. 

System (1) yields the last output value y(k+1) when the out- 
put and input values, y(k) ,y(k-  l ) , y ( k - 2 ) , . . . , u ( k ) , u ( k -  
l ) ,  u(k - 2), .... are given. This implies that u(k) is the input 
to be applied when the desired output is yref as indicated 
explicitly in ( 2 ) .  Therefore, a new rule with the input and 

linguistic values Aij ,  Bij, and Ci by partitioning each universe 
of discourse, and the formulation of fuzzy logic control rules 
is achieved on the basis of the expert’s experience and 
knowledge. In this paper, however, these linguistic values 
are determined from the crisp values of the input and output 
history at every sampling step. Therefore, at the initial stage, 
the assigned u ( k )  may not be good control, but over time, 
the rule base is updated using the proposed self-organizing 
procedure, and better controls are applied. 

A fuzzification procedure for fuzzy values is developed 
to determine Al i ,  Aai,. ... A(,+l)i ,  Bli, Bzi,. . . .  Bmi, and Ci 
from the crisp y(k + l ) , y (k ) ,y (k  - l ) , . . . ,  y(k - n + l ) ,  
u ( k - l ) , u ( k - 2 ) , . . . , u ( k - r n ) ,  andu(k),respectively. The 
fuzzification is done with its base on a reasonably assumed 
input or output ranges. When the assumed input or output 
range is [a, b], the membership function for crisp x1 is 
determined in a mangular shape as follows 

1 + (z - z l ) / (b  - a )  if a 5 z < 21, 

1 - (z - zl)/(b - a )  if z1 5 x < b. PA, = (4) I o  else 

If the crisp value is “a” (lower bound), then the membership 
function is a straight line, with the membership degree one at 
the lower bound and zero at the upper bound. The slope of 
the line is “ - l / ( b  - a)”. Similarly, for the case of the crisp 
value “b” (upper bound), the membership function is also a 
straight line, with the membership degree zero at the lower 
bound and one at the upper bound. The slope of the line is 
“l/(b-a).” For a crisp value in the interior of the range [a, b] ,  
the fuzzification is done in a triangular shape, which has the 
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Fig. 1 .  The fuzzification procedure for A,,, B,,, or C,. 

Fig. 2. The generation of a FARMA rule. 

slope “ - l / ( b  - a)” and “ l / ( b  - a)” for the right and left 
lines, respectively. 

Fig. 1 shows the fuzzification procedure for crisp variables 
21 and 2 2 ,  where A1 and A2 are the corresponding linguistic 
values (fuzzy sets) with membership functions defined on the 
range [a, b]. 

Note that all linguistic values overlap on the entire range 
[a, b], and furthermore, every crisp value uniquely defines the 
membership function with the unity vertex value and identical 
slopes. Thus, this fuzzification procedure requires only the 
minimal information in forming the membership functions, 
i.e., the crisp value; and moreover, each rule can be uniquely 
represented as a point in the (n  + m + 1)-dimensional rule 
space. For practical purposes, the rule space is partitioned into 
a finite number of domains and only one rule, i.e., a point, is 
stored in each domain (see Section III-D). 

The above fuzzification procedure is used to form a FARMA 
rule. For example, let output range be [-lo, lo], and input 
range be [ - 5 , 5 ] ,  and the input output history be y(k + 1) = 
0, y (k) = - 1, and U (  k - 1) = 1 then, a FARMA rule generated 
at the kth step is shown in Fig. 2. 

A FARMA rule is generated at each sampling step and 
stored in a rule base. This means that every experience is 

e Ae U 

Fig. 3. The truth values in a conventional FLC method. 

L L D  

Di 
Fig. 4. The truth value with the similarity function. 

The truth value for the ith rule can be considered as “the 
degree of similarity” between the input fuzzy variables and 
the antecedent linguistic values of the ith rule. 

This conventional method has a shortcoming in that it 
considers only the minimum intersection degree between input 
fuzzy variables and the antecedent linguistic values as shown 
in Fig. 3. This weakness may become severe as the number 
of input variables increases. Since the minimum value alone 
is considered in this case, many other relevant input variables 
will be ignored. 

From the interpolation point of view, this paper proposes 
a new method to deduce the truth value by compounding all 
the input variables with the Z2-norm or the Euclidean distance. 
First, the Euclidean distance between the newly measured crisp 
input variables and the values corresponding to the vertices of 
the membership functions of the existing linguistic values is 
defined as follows 

regarded initially as a fuzzy logic control rule. As the run 
continues, the experience will be accumulated and the FARMA 

Di = 

rule is updated for each domain in the rule space. The updating 
procedure will be explained later in Section III-D. 

J(xli-xl ) Z +  (x2i-x2)2+.  . .+ (X(&&l) i  -~C(%.td-1,)2 
(for the ith rule) (6)  

B.  Inference With Similarity Function 

To attain the output fuzzy set in a conventional method, it 
is necessary to determine a “truth value” of the input fuzzy set 
with respect to each rule [191, [20], [28], [29]. If input fuzzy 

where 
xl ,  z2, ’ ’) crisp input 
xli, x2i, . . . : vertices of the membership functions for 

Ali, A z i , .  . . , Bi;, B2i,. . . . 
variables are considered as fuzzy singletons, the truth value of Next, using Euclidean distance, a similarity function is 

the input fuzzy variables for each rule may be calculated by introduced as shown in Fig* 4. The w ,  plays 
the role of the truth value. For example, if the crisp input 
variables perfectly match the vertices of the corresponding 
membership functions, the Euclidean distance Di is zero. 
Hence wi is one, which means the input condition perfectly 
matches the antecedent linguistic variables of the ith rule. The 
point D,,, in Fig. 4 explains the distance for which the truth 
value becomes zero. Although a tuning procedure may be 
necessary to determine D,,, it is determined by trial and 
error in this paper. 

using the min-and operation as follows 

Wi = min[(Ali A XI), (A2i A X2), . . . , 
( 5 )  (A(n+l)i A X(n+l)L.. .I 

where 
w i :  truth value for the ith rule 
Xi: input fuzzy variable (singleton) 
A: AND operation. 



78 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 1 ,  FEBRUARY 1995 

i-th d e  

I I I 
Yref Y(k) U@- 1 ) 

Fig. 5. Inference with the similarity function. 

consequent fuzy set 
for the J-th Nk 

1_ net control range (NCR) 
c b  

The net control range (NCR) by the 9-opertlon wlth two rules Fig 6 

The similarity value thus defined reflects the contribution of 
all input variables. The evaluation of the proposed truth value 
w with three fuzzy input variables, yref,y(k), and u(k - l), 
is shown in Fig. 5, where the i-th rule is closer to the input 
variables than the jth rule and thus w; > wj. 

The consequent linguistic value, that is the net linguistic 
control action, C,, is deduced with the poperation [28] as 
follows 

C n  = n(wiwc,), (7) 
2 

where 
C,: net linguistic control action 
w;: truth value from the similarity function for the 

i-th rule 
pcZ : membership degree of the consequence linguistic 

value C; in the ith rule. 
With the C,, we take the a-cut of the C, where CY = 

maxp(C,), to find a control range for the highest possibility. 
The use of the poperation and the inference procedure with 
two rules are shown in Fig. 6. Each operation forms the 
consequent fuzzy set, and the range with its membership 
degree one is deduced as a control range for each rule, i.e., 
[a, b] for the ith rule, and [e, d] for the jth rule as the respective 
ranges with the highest possibility. As a result of this inference, 
the net control range (NCR), which is the "intersection" of all 
control ranges, is determined, i.e., [e, b] in Fig. 6. 

For a large D,,, the NCR may be empty since the large 
D,,, value in the similarity function causes a high truth value 
for each rule. In this case, however, the a-cut with a < 1 
always guarantees an NCR with a singleton. 

C. Defuzzification with Extrapolation 

Defuzzification is a procedure to determine a crisp value 
from a consequent fuzzy set. That is, the defuzzification selects 

t-. 
time 

Fig. 7. Estimation of y(k + 1) by the second extrapolation. 

a representative crisp output of the FLC from the possibility 
distribution over the output space. The often used methods are 
the center of area (COA) and the mean of maxima (MOM) 
[19]-[21]. In this paper, defuzzification is to determine a crisp 
value from the net control range (NCR) resulting from the 
inference. Any control value within the NCR has a potential 
as a control, however, some controls may cause overshoot 
while others may be too slow. 

This problem can be avoided by adding a predictive ca- 
pability in the defuzzification. A method is presented which 
modifies the NCR to compute a crisp value by using the 
prediction or "trend" of the output response. The series of 
the last outputs is extrapolated in time domain to estimate 
y(k + 1) by the Newton backward-difference formula [31]. 
If the extrapolation order is I, using the binomial-coefficient 
notation (3 - - s(s  - 1) ... ( s  - k + 1) 

k !  

the estimate $(k + 1) is calculated as follows 

(9) 

where 

vZy(l~) A V ( V Z - ' Y ( ~ C ) )  for i 2 2 
Vy(k) A y(k) - y(k - 1). 

Fig. 7 shows an example of the second order extrapolation 
from the last three points, y(k - 2),y(k - l), and y(k), to 
attain the estimate of y(k + l), denoted by $(k + 1). The 
estimation using extrapolation is based on the hypothesis that 
the output will not have any sudden change, but will follow 
the latest output trend. 

Defuzzification is performed by comparing the two values, 
the estimate $ ( I C  + 1) and the reference output yref or the 
temporary target y,(k + l), generated by 

(1 1) 

where y,(k + 1) is the reference output or the temporary target 
and CY is the target ratio constant (0 < CY 5 1). The value 
of CY describes the rate with which the present output y(k) 
approaches the reference output value, and thus has a positive 
value between zero and one. The value of CY is chosen by 
the user to obtain a desirable response. The selection of CY 

has similar effect as the selection of a reference model in the 
model reference adaptive control (MRAC). 

When the estimate exceeds the reference output, the control 
has to slow down. On the other hand, when the estimate has 
not reached the reference, the control should speed up. Two 
possible cases will therefore be considered 

Y F ( ~  + 1) = ~ ( k )  + a(Yref - ~ ( k ) )  
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P 4 
4 net control range (NCR) &T 

u(k-I) 

k- 7 ___( modified NCR (case I )  

modified NCR (case 2) +e 
u(k) 

Fig. 8. The modification of the net control range and defuzzification. 

Case 1: c ( k  + 1) < y,(k + 1) 
Case 2: y(k + 1) > y,(k + 1). 

To modify the control range, the sign of Vu(k ) (=  u ( k )  - 
u(k - 1)) is assumed to be the same as the sign of (y,(k+l)- 
$(k + 1)). This is based on the ARMA model representation 
of a plant 

y(k + 1) = a1y(k) + aay(k - 1) + a3y(k - 2) + . . .  
+ b l U ( k )  + b2u(k - 1) + bgu(k - 3) + ...  

(12) 

where the sign of “bl” determines whether u ( k )  has to be 
increased or decreased in controlling the value y(k + 1). 

The sign of b l  can be easily determined in a physical 
system. For example, in a boiler system, if U is fuel and 
y is temperature then the output y increases (decreases) as 
u increases (decreases). Thus, the sign of b l  is positive. 
Therefore, without the loss of generality, the sign of bl is 
assumed to be positive in this paper; implying that the input 
has to be increased to increase the output. 

Thus, for Case 1 the sign of (y,(k + 1) - y(k + l)), hence 
the sign of V u ( k ) ,  is positive, implying that u(k) has to be 
increased from the previous input U (  k - 1). On the other hand, 
for Case 2, the sign of V u ( k )  is negative and u(k) has to be 
decreased from the previous input u(k - 1). The final crisp 
control value U (  k )  is then selected as one of the mid-points of 
the modified net control ranges as shown in Fig. 8 

for Case 1, 
{ ( P  + u ( k  - 1))/2 for Case 2 (13) 

where p and q are the respective lower and upper limits of the 
net control range (NCR) resulting from the inference (Section 

When the sign of b l  is negative, u ( k )  is ( p  + u(k - 1))/2 
for Case 1, and ( u ( k  - 1) + q)/2 for Case 2,  respectively, in 
(13); and in Fig. 8, the two cases have to be switched. 

( u ( k  - 1) + q)/2 u ( k )  = 

111-B). 

D. Self-organization of the Rule Base 
The FARMA rule defined in Section 11-B is generated 

at every sampling time. Each rule can be represented as 
a point in the (n  + m + 1)-dimensional rule space, i.e., 
(z l i ,  x ~ i , .  . . , z(,+,+l)i) as in (6). If every rule is stored in the 
rule base, two problems will occur. First, the memory will be 
exhausted. And second, the rules which are formed improperly 
during initial stages also affect the later inference. 

For this reason, the fuzzy rule space is partitioned into a 
finite number of domains of different sizes and only one rule, 
i.e., a point, is stored in each domain. The variables around the 
set point (target) are partitioned densely to reduce the steady- 
state error. This uneven partition, however, is not done for 

u(k-I) 

Fig. 9. Division of a 2-dimensional rule space. 

I i-o history: y(k+l),y(k), ... ,y(k-n),u(k),u(k-1), .__ ,u(k-m) 

I Construction ofa FARMA rule 1 
c 

L-&. 
Fig. 10. The self-organization of the rule base. 

input variables, u(k - l), u ( k  - a) ,  . . . , since the steady state 
value of u is not known. Fig. 9 shows an example of the 
division of a rule space for one output and one input variables, 
y(k) and u ( k  - 1). 

To overcome the second problem, the following perfor- 
mance index is defined in updating the rule base 

J = IYT(k + 1) - Y(k + 1)l (14) 

where y(k + 1) is real plant output, and y,(k + 1) is the 
reference output. Therefore, at the ( k  + 1)-th step, the per- 
formance index J is calculated with the real plant output 
y(k + 1) resulting from the lcth step control. Fig. 10 shows 
the rule base updating procedure. If there are two rules in 
a given domain, the selection of a rule is based on J .  That 
is, if there is a new rule which has the output closer to the 
reference output in a given domain, the old rule is replaced 
by the new one. This updating procedure of the rule base 
makes the proposed fuzzy logic controller capable of leaming 
the object plant and self-organizing the rule base. The number 
of rules increases monotonically as new input-output data is 
experienced. It converges to a finite number in steady state, 
however, and never exceeds the maximum number of domains 
partitioned in the (n  + m + 1)-dimensional rule space. 

This approach compares well with the Cell State Space 
Algorithm [ 181, in that the proposed method makes a reference 
trajectory or reference cell in the state space by (14) and 
remembers the favorable results as the FARMA rules. 

Fig. 11 shows the architecture of the proposed FLC system. 
Initially, since there is no control rule in the rule base, the 
control input u(k) for the first step is the medium value of 
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Fig. 1 1 .  The self-organizing fuzzy logic control system architecture. 

Fig. 12. An inverted pendulum of cart. 

the entire input range. As time increases, the defuzzification 
procedure begins to determine whether the input has to be 
increased or decreased depending on the trend of the output. 
The sign of V u ( k )  and the magnitude of u(k)  are determined 
in the defuzzification procedure. The self-organization of the 
rule base, in other words “learning” of the object system, is 
performed at each sampling time. 

IV. SIMULATION RESULT 

A case study considered is the problem of balancing an 
upright pole, i.e., an inverted pendulum. The bottom of a 
pole is attained by a pivot to a cart that travels along a track 
as shown in Fig. 12. The movement of the cart and pole is 
constrained in the vertical plane. 

The model of an inverted pendulum is described by the 
following differential equations 

( M  + m)z + m L  cos(0)8 - m L  cos(6)e2 = U (15) 
m? cos o + mLB = mg sin o 

where 
M :  mass of cart 
m: mass of pole 
L: distance from pivot to pole’s center of mass 
g :  acceleration of gravity (g = 9.8 m/s2). 
This model is a fourth-order nonlinear system with input 

force U in Newton (N) and output angle y = 6 in degree (’). 
The system is inherently unstable, and has severe nonlinearity 
when the angle deviates much from zero. Thus, it is very 
difficult to solve this control problem by traditional analytical 
methods. 

The control force U is limited to 40[N] as the maximum 
available force. The parameters of the system are M = l[kg], 
m = l[kg], and L = l[m], and the sampling time is 
0.01 [sec]. The fourth-order Runge-Kutta method is applied 
to solve the given differential equations. In the simulation, 
y,,f,y(k),y(k - l), and u(k - l ) ,u (k  - 2) were used as 

output y 

the number of generated rules 
# of rules. 

s 

-1 0- 

-20 

time[mS] 

Fig. 13. Simulation result 1: initial angle 45 degrees, a = 0.15 

t 
output 40 
[degree], 30- 
i n P U ~ P 1 ,  the number of generated mles 

# of rules. 20- 

input variables to the fuzzy logic controller and each variable 
was divided into six segments to partition the rule space. The 
third-order extrapolation was performed to estimate y(k + 1). 
Output range is -70’ - 70°, input range is -40 N 40[N], and 
the target ratio constant a was determined by trial and error. 
In Fig. 12, it is noted that the input U has to be increased 
(decreased) to decrease (increase) the output angle. Therefore, 
the sign of bl in the ARMA model (12) is negative. 

Fig. 13 shows the result of a simulation with the proposed 
fuzzy logic controller when the pole is with an initial angle 
of y = 45 degrees and, the reference is zero (degree). 
The used target ratio constant a is 0.15 and the number of 
generated rules is 29 after convergence. Case 1 and Case 2 
for the defuzzification procedure are shown in Fig. 13 using 
a function, sign (Vu(k) )  - 10. The function has the value 
-11 for Case 1 and -9 for Case 2, respectively. If the plant 
condition from the output trend is classified as Case 1 (Case 
2), the input ~ ( k )  is decreased (increased) from u(k - 1). 

In Fig. 14, the initial angle is y = -50 degrees, the 
reference is zero, and the a is 0.15. The number of generated 
rules is 37. Case 1 and Case 2 for defuzzification are also 
shown. From Fig. 13 and Fig. 14, it can be observed that the 
number of rules generated increases monotonically as runs 
continue and more rules are stored for larger initial condition. 
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output 
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~put[Nl, 

# of Nles. 
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time[mS] 

Fig. 15. Simulation result 3: initial angle 20 degrees, a = 0.15. 
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input[Nl, 
# of rules. 

the number of generated rules 
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time[mS] 

Fig. 16. Simulation result 4: disturbance -20 degrees, cy = 0.15. 

In Fig. 15 and Fig. 16, an extemal disturbance is suddenly 
applied at 500 step ( 5  sec.). The magnitudes of the disturbance 
are 20 degrees and -20 degrees, respectively, and the number 
of generated rules is increased to 35 and 50, respectively. The 
number of newly-generated rules is larger in simulation 4 than 
in simulation 3. This is because the sign of the disturbance 
(-20 degrees) and the initial condition (45 degrees) are 
different in simulation 4, and thus more new plant conditions 
are experienced by the FLC. 

Fig. 17 shows the influence of different a. The smaller the 
cy was, the slower the convergence was. The output diverged 
when a was larger than 0.2, which is similar to the case when 
system diverges with improperly chosen reference model in 
the MRAC. 

V. CONCLUSION 
This paper proposed a fuzzy logic control algorithm which 

controls an unknown plant without a modeling procedure 
or preconstructed rules of an expert. It mimics the human 
learning process with only a minimal information on the 
environment. That is, the proposed algorithm starts with no 
initial rule, but controls the plant on-line by trial and error, 
and by remembering results that are considered favorable. To 
realize this, a concept of the FARMA rule was introduced 
using the plant input-output history, and new inference and 

Fig. 17. The influence of the target ratio constant a. 

defuzzification methods were developed. The truth value for 
inference is defined by using the Euclidean distance and a 
similarity function to better represents the closeness of the 
input variables to the antecedent linguistic variables. In the 
defuzzification procedure, the sign of V u ( k )  is determined 
with the hypothesis that the system output will not have any 
sudden change, but will follow the latest trend. An updating 
procedure of the rule base is developed, which makes the 
proposed fuzzy logic controller capable of learning the system 
and self-organizing the controller. 

Computer simulations for an inverted pendulum have 
demonstrated the effectiveness of the proposed fuzzy logic . 
controller, and showed satisfactory results without modeling 
or preconstructed rules of human experts. The FARMA rule 
and the inference using the similarity function developed here 
can also be applied to other conventional fuzzy logic control. 
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